Range-v3
Range algorithms, views, and actions for the Standard Library
Transformation

Description

Transformation algorithms.

Modules

 lazy
 

Typedefs

template<typename L , typename State , typename Fn >
using meta::accumulate = fold< L, State, Fn >
 An alias for meta::fold. More...
 
template<typename ListOfLists >
using meta::cartesian_product = reverse_fold< ListOfLists, list< list<> >, quote_trait< detail::cartesian_product_fn > >
 Given a list of lists ListOfLists, return a new list of lists that is the Cartesian Product. Like the sequence function from the Haskell Prelude. More...
 
template<typename... Ls>
using meta::concat_ = _t< detail::concat_< Ls... > >
 Concatenates several lists into a single list. More...
 
template<typename L , typename N >
using meta::drop = drop_c< L, N::type::value >
 Return a new meta::list by removing the first N elements from L. More...
 
template<typename L , std::size_t N>
using meta::drop_c = _t< detail::drop_< L, N > >
 Return a new meta::list by removing the first N elements from L. More...
 
template<typename L , typename Pred >
using meta::filter = join< transform< L, detail::filter_< Pred > >>
 Returns a new meta::list where only those elements of L that satisfy the Callable Pred such that invoke<Pred,A>::value is true are present. That is, those elements that don't satisfy the Pred are "removed". More...
 
template<typename L , typename State , typename Fn >
using meta::fold = _t< detail::fold_< L, id< State >, Fn > >
 Return a new meta::list constructed by doing a left fold of the list L using binary invocable Fn and initial state State. That is, the State_N for the list element A_N is computed by Fn(State_N-1, A_N) -> State_N. More...
 
template<typename ListOfLists >
using meta::join = apply< quote< concat >, ListOfLists >
 Joins a list of lists into a single list. More...
 
template<typename L , typename Fn >
using meta::partition = fold< L, pair< list<>, list<> >, detail::partition_< Fn > >
 Returns a pair of lists, where the elements of L that satisfy the invocable Fn such that invoke<Fn,A>::value is true are present in the first list and the rest are in the second. More...
 
template<typename L >
using meta::pop_front = _t< detail::pop_front_< L > >
 Return a new meta::list by removing the first element from the front of L. More...
 
template<typename L , typename... Ts>
using meta::push_back = apply< bind_back< quote< list >, Ts... >, L >
 Return a new meta::list by adding the element T to the back of L. More...
 
template<typename L , typename... Ts>
using meta::push_front = apply< bind_front< quote< list >, Ts... >, L >
 Return a new meta::list by adding the element T to the front of L. More...
 
template<typename L , typename T , typename U >
using meta::replace = _t< detail::replace_< L, T, U > >
 Return a new meta::list where all instances of type T have been replaced with U. More...
 
template<typename L , typename C , typename U >
using meta::replace_if = _t< detail::replace_if_< L, C, U > >
 Return a new meta::list where all elements A of the list L for which invoke<C,A>::value is true have been replaced with U. More...
 
template<typename L >
using meta::reverse = _t< detail::reverse_< L > >
 Return a new meta::list by reversing the elements in the list L. More...
 
template<typename L , typename State , typename Fn >
using meta::reverse_fold = _t< detail::reverse_fold_< L, State, Fn > >
 Return a new meta::list constructed by doing a right fold of the list L using binary invocable Fn and initial state State. That is, the State_N for the list element A_N is computed by Fn(A_N, State_N+1) -> State_N. More...
 
template<typename L , typename Fn >
using meta::sort = _t< detail::sort_< L, Fn > >
 Return a new meta::list that is sorted according to invocable predicate Fn. More...
 
template<typename... Args>
using meta::transform = _t< detail::transform_< list< Args... > >>
 Return a new meta::list constructed by transforming all the elements in L with the unary invocable Fn. transform can also be called with two lists of the same length and a binary invocable, in which case it returns a new list constructed with the results of calling Fn with each element in the lists, pairwise. More...
 
template<typename ListOfLists >
using meta::transpose = fold< ListOfLists, repeat_n< size< front< ListOfLists > >, list<> >, bind_back< quote< transform >, quote< push_back > >>
 Given a list of lists of types ListOfLists, transpose the elements from the lists. More...
 
template<typename L >
using meta::unique = fold< L, list<>, quote_trait< detail::insert_back_ > >
 Return a new meta::list where all duplicate elements have been removed. More...
 
template<typename ListOfLists >
using meta::zip = transpose< ListOfLists >
 Given a list of lists of types ListOfLists, construct a new list by grouping the elements from the lists pairwise into meta::lists. More...
 
template<typename Fn , typename ListOfLists >
using meta::zip_with = transform< transpose< ListOfLists >, uncurry< Fn > >
 Given a list of lists of types ListOfLists and an invocable Fn, construct a new list by calling Fn with the elements from the lists pairwise. More...
 

Typedef Documentation

◆ accumulate

template<typename L , typename State , typename Fn >
using meta::accumulate = typedef fold<L, State, Fn>

#include <meta/meta.hpp>

An alias for meta::fold.

Complexity
$ O(N) $.

◆ cartesian_product

template<typename ListOfLists >
using meta::cartesian_product = typedef reverse_fold<ListOfLists, list<list<> >, quote_trait<detail::cartesian_product_fn> >

#include <meta/meta.hpp>

Given a list of lists ListOfLists, return a new list of lists that is the Cartesian Product. Like the sequence function from the Haskell Prelude.

Complexity
$ O(N \times M) $, where $ N $ is the size of the outer list, and $ M $ is the size of the inner lists.

◆ concat_

template<typename... Ls>
using meta::concat_ = typedef _t<detail::concat_<Ls...> >

#include <meta/meta.hpp>

Concatenates several lists into a single list.

Precondition
The parameters must all be instantiations of meta::list.
Complexity
$ O(L) $ where $ L $ is the number of lists in the list of lists.

◆ drop

template<typename L , typename N >
using meta::drop = typedef drop_c<L, N::type::value>
related

#include <meta/meta.hpp>

Return a new meta::list by removing the first N elements from L.

Complexity
$ O(1) $.

◆ drop_c

template<typename L , std::size_t N>
using meta::drop_c = typedef _t<detail::drop_<L, N> >

#include <meta/meta.hpp>

Return a new meta::list by removing the first N elements from L.

Complexity
$ O(1) $.

◆ filter

template<typename L , typename Pred >
using meta::filter = typedef join<transform<L, detail::filter_<Pred> >>
related

#include <meta/meta.hpp>

Returns a new meta::list where only those elements of L that satisfy the Callable Pred such that invoke<Pred,A>::value is true are present. That is, those elements that don't satisfy the Pred are "removed".

Complexity
$ O(N) $.

◆ fold

template<typename L , typename State , typename Fn >
using meta::fold = typedef _t<detail::fold_<L, id<State>, Fn> >

#include <meta/meta.hpp>

Return a new meta::list constructed by doing a left fold of the list L using binary invocable Fn and initial state State. That is, the State_N for the list element A_N is computed by Fn(State_N-1, A_N) -> State_N.

Complexity
$ O(N) $.

◆ join

template<typename ListOfLists >
using meta::join = typedef apply<quote<concat>, ListOfLists>
related

#include <meta/meta.hpp>

Joins a list of lists into a single list.

Precondition
The parameter must be an instantiation of meta::list<T...> where each T is itself an instantiation of meta::list.
Complexity
$ O(L) $ where $ L $ is the number of lists in the list of lists.

◆ partition

template<typename L , typename Fn >
using meta::partition = typedef fold<L, pair<list<>, list<> >, detail::partition_<Fn> >

#include <meta/meta.hpp>

Returns a pair of lists, where the elements of L that satisfy the invocable Fn such that invoke<Fn,A>::value is true are present in the first list and the rest are in the second.

Complexity
$ O(N) $.

◆ pop_front

template<typename L >
using meta::pop_front = typedef _t<detail::pop_front_<L> >

#include <meta/meta.hpp>

Return a new meta::list by removing the first element from the front of L.

Complexity
$ O(1) $.

◆ push_back

template<typename L , typename... Ts>
using meta::push_back = typedef apply<bind_back<quote<list>, Ts...>, L>

#include <meta/meta.hpp>

Return a new meta::list by adding the element T to the back of L.

Complexity
$ O(1) $.
Note
pop_back not provided because it cannot be made to meet the complexity guarantees one would expect.

◆ push_front

template<typename L , typename... Ts>
using meta::push_front = typedef apply<bind_front<quote<list>, Ts...>, L>

#include <meta/meta.hpp>

Return a new meta::list by adding the element T to the front of L.

Complexity
$ O(1) $.

◆ replace

template<typename L , typename T , typename U >
using meta::replace = typedef _t<detail::replace_<L, T, U> >
related

#include <meta/meta.hpp>

Return a new meta::list where all instances of type T have been replaced with U.

Complexity
$ O(N) $.

◆ replace_if

template<typename L , typename C , typename U >
using meta::replace_if = typedef _t<detail::replace_if_<L, C, U> >
related

#include <meta/meta.hpp>

Return a new meta::list where all elements A of the list L for which invoke<C,A>::value is true have been replaced with U.

Complexity
$ O(N) $.

◆ reverse

template<typename L >
using meta::reverse = typedef _t<detail::reverse_<L> >
related

#include <meta/meta.hpp>

Return a new meta::list by reversing the elements in the list L.

Complexity
$ O(N) $.

◆ reverse_fold

template<typename L , typename State , typename Fn >
using meta::reverse_fold = typedef _t<detail::reverse_fold_<L, State, Fn> >

#include <meta/meta.hpp>

Return a new meta::list constructed by doing a right fold of the list L using binary invocable Fn and initial state State. That is, the State_N for the list element A_N is computed by Fn(A_N, State_N+1) -> State_N.

Complexity
$ O(N) $.

◆ sort

template<typename L , typename Fn >
using meta::sort = typedef _t<detail::sort_<L, Fn> >
related

#include <meta/meta.hpp>

Return a new meta::list that is sorted according to invocable predicate Fn.

Complexity
Expected: $ O(N log N) $ Worst case: $ O(N^2) $.
using L0 = list<char[5], char[3], char[2], char[6], char[1], char[5], char[10]>;
static_assert(std::is_same_v<L1, list<char[1], char[2], char[3], char[5], char[5], char[6], char[10]>>, "");

◆ transform

template<typename... Args>
using meta::transform = typedef _t<detail::transform_<list<Args...> >>
related

#include <meta/meta.hpp>

Return a new meta::list constructed by transforming all the elements in L with the unary invocable Fn. transform can also be called with two lists of the same length and a binary invocable, in which case it returns a new list constructed with the results of calling Fn with each element in the lists, pairwise.

Complexity
$ O(N) $.

◆ transpose

template<typename ListOfLists >
using meta::transpose = typedef fold<ListOfLists, repeat_n<size<front<ListOfLists> >, list<> >, bind_back<quote<transform>, quote<push_back> >>

#include <meta/meta.hpp>

Given a list of lists of types ListOfLists, transpose the elements from the lists.

Complexity
$ O(N \times M) $, where $ N $ is the size of the outer list, and $ M $ is the size of the inner lists.

◆ unique

template<typename L >
using meta::unique = typedef fold<L, list<>, quote_trait<detail::insert_back_> >
related

#include <meta/meta.hpp>

Return a new meta::list where all duplicate elements have been removed.

Complexity
$ O(N^2) $.

◆ zip

template<typename ListOfLists >
using meta::zip = typedef transpose<ListOfLists>
related

#include <meta/meta.hpp>

Given a list of lists of types ListOfLists, construct a new list by grouping the elements from the lists pairwise into meta::lists.

Complexity
$ O(N \times M) $, where $ N $ is the size of the outer list, and $ M $ is the size of the inner lists.

◆ zip_with

template<typename Fn , typename ListOfLists >
using meta::zip_with = typedef transform<transpose<ListOfLists>, uncurry<Fn> >
related

#include <meta/meta.hpp>

Given a list of lists of types ListOfLists and an invocable Fn, construct a new list by calling Fn with the elements from the lists pairwise.

Complexity
$ O(N \times M) $, where $ N $ is the size of the outer list, and $ M $ is the size of the inner lists.
meta::sort
_t< detail::sort_< L, Fn > > sort
Return a new meta::list that is sorted according to invocable predicate Fn.
Definition: meta.hpp:3244